p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.98D4, C4.7(C23×C4), C4⋊C4.343C23, (C2×C8).392C23, (C2×C4).177C24, (C22×C8)⋊48C22, D4.19(C22×C4), (C22×C4).781D4, C23.377(C2×D4), C4.142(C22×D4), Q8.19(C22×C4), D4⋊C4⋊85C22, Q8⋊C4⋊88C22, (C2×D4).361C23, C4○(C23.37D4), C4○(C23.36D4), C4○(C23.38D4), (C2×Q8).334C23, C42⋊C2⋊75C22, C23.36D4⋊47C2, C23.24D4⋊34C2, C2.1(D8⋊C22), C23.38D4⋊38C2, C23.37D4⋊38C2, C23.87(C22⋊C4), (C22×M4(2))⋊20C2, (C2×M4(2))⋊70C22, (C23×C4).515C22, (C22×C4).901C23, C22.127(C22×D4), (C22×D4).554C22, (C22×Q8).458C22, (C2×C4○D4)⋊20C4, C4○D4⋊14(C2×C4), (C2×D4)⋊49(C2×C4), (C2×Q8)⋊40(C2×C4), (C2×C4).445(C2×D4), C4.75(C2×C22⋊C4), (C2×C4⋊C4)⋊115C22, (C2×C42⋊C2)⋊42C2, (C2×C4).245(C22×C4), (C22×C4).325(C2×C4), (C22×C4○D4).20C2, C22.22(C2×C22⋊C4), C2.39(C22×C22⋊C4), (C2×C4).159(C22⋊C4), (C2×C4○D4).274C22, (C2×C4)○(C23.36D4), (C2×C4)○(C23.38D4), SmallGroup(128,1628)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.98D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=c, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=cde3 >
Subgroups: 668 in 386 conjugacy classes, 172 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C24, D4⋊C4, Q8⋊C4, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C23.24D4, C23.36D4, C23.37D4, C23.38D4, C2×C42⋊C2, C22×M4(2), C22×C4○D4, C24.98D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C24, C2×C22⋊C4, C23×C4, C22×D4, C22×C22⋊C4, D8⋊C22, C24.98D4
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 29)(27 31)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 20)(10 21)(11 22)(12 23)(13 24)(14 17)(15 18)(16 19)
(1 32)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 24)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15 32 22)(2 21 25 14)(3 13 26 20)(4 19 27 12)(5 11 28 18)(6 17 29 10)(7 9 30 24)(8 23 31 16)
G:=sub<Sym(32)| (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15,32,22)(2,21,25,14)(3,13,26,20)(4,19,27,12)(5,11,28,18)(6,17,29,10)(7,9,30,24)(8,23,31,16)>;
G:=Group( (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,20)(10,21)(11,22)(12,23)(13,24)(14,17)(15,18)(16,19), (1,32)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,24)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15,32,22)(2,21,25,14)(3,13,26,20)(4,19,27,12)(5,11,28,18)(6,17,29,10)(7,9,30,24)(8,23,31,16) );
G=PermutationGroup([[(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,29),(27,31)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,20),(10,21),(11,22),(12,23),(13,24),(14,17),(15,18),(16,19)], [(1,32),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,24),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15,32,22),(2,21,25,14),(3,13,26,20),(4,19,27,12),(5,11,28,18),(6,17,29,10),(7,9,30,24),(8,23,31,16)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4V | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D8⋊C22 |
kernel | C24.98D4 | C23.24D4 | C23.36D4 | C23.37D4 | C23.38D4 | C2×C42⋊C2 | C22×M4(2) | C22×C4○D4 | C2×C4○D4 | C22×C4 | C24 | C2 |
# reps | 1 | 4 | 4 | 2 | 2 | 1 | 1 | 1 | 16 | 7 | 1 | 4 |
Matrix representation of C24.98D4 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 16 | 0 |
0 | 0 | 16 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
13 | 7 | 0 | 0 | 0 | 0 |
10 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 15 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 6 | 13 | 0 | 16 |
0 | 0 | 7 | 0 | 0 | 1 |
10 | 4 | 0 | 0 | 0 | 0 |
13 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 15 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 16 | 0 |
0 | 0 | 16 | 16 | 1 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,1,16,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,1,16,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[13,10,0,0,0,0,7,4,0,0,0,0,0,0,16,0,6,7,0,0,0,0,13,0,0,0,0,1,0,0,0,0,15,1,16,1],[10,13,0,0,0,0,4,7,0,0,0,0,0,0,1,0,1,16,0,0,0,0,0,16,0,0,15,1,16,1,0,0,0,1,0,0] >;
C24.98D4 in GAP, Magma, Sage, TeX
C_2^4._{98}D_4
% in TeX
G:=Group("C2^4.98D4");
// GroupNames label
G:=SmallGroup(128,1628);
// by ID
G=gap.SmallGroup(128,1628);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,248,2804,1411,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^3>;
// generators/relations